Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[2-(2-Thienvlcarbonvl)ethyl]-4-[3-(trifluoromethyl)phenyl]piperazin-1-ium chloride

Xue-Jun Chen,^a* Sheng Tan,^a Zhen-Hua Shang^b and Guang-Bin Feng^a

^aOrdnance Technology Institute, Ordnance Engineering College, Shijiazhuang 050003, People's Republic of China, and ^bCollege of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China

Correspondence e-mail: jxgcsjz@yahoo.com.cn

Received 13 June 2007; accepted 15 June 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.062; wR factor = 0.187; data-to-parameter ratio = 15.0

The title compound, $C_{18}H_{20}F_3N_2OS^+ \cdot Cl^-$, was synthesized from 2-acetothiophene, 1-[3-(trifluoromethyl)phenyl]piperazine and paraformaldehyde. There are two independent ion pairs in the asymmetric unit. In each cation, the piperazine ring adopts a chair conformation and the F atoms of the trifluoromethyl groups are disordered over two sites with a ratio of major and minor occupancy of approximately 0.6:0.4. Two intermolecular N-H···Cl hydrogen bonds help to stabilize the crystal structure.

Related literature

For background information, see: Oficialdegui et al. (2000); Martinez et al. (2001); Esparza et al. (2001); Orus et al. (2002).

Experimental

Crystal data $C_{18}H_{20}F_3N_2OS^+ \cdot Cl^ M_r = 404.89$

Monoclinic, $P2_1/n$ a = 10.5715 (14) Å b = 10.4989 (14) Å c = 34.966 (8) Å $\beta = 90.040 \ (6)^{\circ}$ V = 3880.8 (12) Å³ Z = 8

Data collection

Bruker SMART CCD	21590 measured reflections
diffractometer	7997 independent reflections
Absorption correction: multi-scan	3476 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 1997)	$R_{\rm int} = 0.061$
$T_{\min} = 0.935, T_{\max} = 0.960$	

Refinement

 $\begin{array}{l} R[F^2>2\sigma(F^2)]=0.062\\ wR(F^2)=0.187 \end{array}$ S = 1.007997 reflections 533 parameters 156 restraints

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.42$ e Å⁻³ $\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - \mathbf{H} \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $N3-H3A\cdots Cl2$ 0.94(3)2.10 (3) 3.025 (3) 168 (4) $N1 - H1A \cdot \cdot \cdot Cl1^{i}$ 0.93 (3) 2.11(3)3.033 (3) 174 (3)

Symmetry code: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2431).

References

- Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA,
- Esparza, J. M., Oficialdegui, A. M., Silanes, S. P., Heras, B., Orus, L., Palop, J. A., Lasheras, B., Roca, J., Mourelle, M., Bosch, A., Castillo, J. C. D., Tordera, R., Rio, J. D. & Monge, A. (2001). J. Med. Chem. 44, 418-428.
- Martinez, J., Perez, S., Oficialdegui, A. M., Heras, B., Orus, L., Villanueva, H., Palop, J. A., Roca, J., Mourelle, M., Bosch, A., Castillo, J. C. D., Lasheras, B., Tordera, R., Rio, J. D. & Monge, A. (2001). Eur. J. Med. Chem. 36, 55-61.
- Oficialdegui, A. M., Martinez, J., Perez, S., Heras, B., Irurzun, M., Palop, J. A., Tordera, R., Lasheras, B., Rio, J. D. & Monge, A. (2000). Farmaco, 55, 345-353.
- Orus, L., Silanes, S. P., Oficialdegui, A. M., Esparza, J. M., Castillo, J. C. D., Mourelle, M., Langer, T., Guccione, S., Donzella, G., Krovat, E. M., Poptodorov, K., Lasheras, B., Ballaz, S., Hervias, I., Tordera, R., Rio, J. D. & Monge, A. (2002). J. Med. Chem. 45, 4128-4139.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Mo $K\alpha$ radiation

 $0.20 \times 0.14 \times 0.12$ mm

 $\mu = 0.34 \text{ mm}^{-1}$

T = 294 (2) K

Acta Cryst. (2007). E63, o3285 [doi:10.1107/81600536807029522]

1-[2-(2-Thienylcarbonyl)ethyl]-4-[3-(trifluoromethyl)phenyl]piperazin-1-ium chloride

X.-J. Chen, S. Tan, Z.-H. Shang and G.-B. Feng

Comment

Mannich bases can be used as anti-corrosion reagents or as a class of selective antidepressants with a low incidence of side effects (Oficialdegui *et al.*, 2000; Martinez *et al.*, 2001; Esparza *et al.*, 2001; Orus *et al.*, 2002). The title compound, was synthesized from 2-acetothiophene, 1-(3-Trifluoromethyl-phenyl)-piperazineand and paraformaldehyde. The molecular structure of the title compound is illustrated in Fig. 1. The asymmetric unit contains two independent molecules. Two intermolecular N—H···Cl hydrogen bonds help to consolidate the crystal packing. In each molecule, the piperazine ring has a chair conformation and the F atoms of the CF₃ groups are disordered over two sites.

Experimental

A mixture of 2-acetothiophene 1.26 (10 mmol), 1-(3-Trifluoromethyl-phenyl)-piperazine 2.3 g (15 mmol) and concentrated hydrochloric acid (10 ml) in absolute ethanol(20 ml) was refluxed. Paraformaldehyde 0.9 g (45 mmol) was added over a period of 20 min. The reaction mixture was refluxed for another 12 h, cooled and the solid was precipitated. 20 ml acetone was added to the mixture and stirred for 30 min. The mixture was filtrated, washed with ethyl ether, dried in vacuum to give the title compound. The title compound was dissolved in absolute methanol; the solution was kept at ambient temperature for 15 d by natural evaporation to give single crystals suitable for X-ray analysis.

Refinement

Carbon-bound H atoms were positioned geometrically, with C—H = 0.93-0.97 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$, The nitrogenbound H atoms were refined freely.

Figures

Fig. 1. The molecular structure of one of the cations drawn with 30% probability ellipsoids.

1-[2-(2-Thienylcarbonyl)ethyl]-4-[3-(trifluoromethyl)phenyl]piperazin-1-ium chloride

Crystal data	
$C_{18}H_{20}F_{3}N_{2}OS^{+}\cdot Cl^{-}$	$F_{000} = 1680$
$M_r = 404.89$	$D_{\rm x} = 1.386 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 3440 reflections

<i>a</i> = 10.5715 (14) Å
<i>b</i> = 10.4989 (14) Å
c = 34.966 (8) Å
$\beta = 90.040 \ (6)^{\circ}$
$V = 3880.8 (12) \text{ Å}^3$
Z = 8

Data collection

Bruker SMART CCD diffractometer	7997 independent reflections
Radiation source: fine-focus sealed tube	3476 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.061$
T = 294(2) K	$\theta_{\text{max}} = 26.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.2^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = -13 \rightarrow 8$
$T_{\min} = 0.935, T_{\max} = 0.960$	$k = -11 \rightarrow 13$
21590 measured reflections	<i>l</i> = −43→33

 $\theta = 2.3-22.6^{\circ}$ $\mu = 0.34 \text{ mm}^{-1}$

T = 294 (2) K Block, colorless

 $0.20\times0.14\times0.12~mm$

Refinement

156 restraints
H atoms treated by a mixture of independent and constrained refinement
$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.04P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{max} < 0.001$
$\Delta \rho_{max} = 0.42 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic of	or eqi	uivalent	t isotropic	displ	lacement	parameters	$(Å^2$	')
				1	1		1			1	(/

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
S1	0.87631 (13)	0.26060 (17)	0.11320 (4)	0.0945 (5)	

S2	0.13158 (12)	0.17445 (15)	0.39331 (4)	0.0845 (5)	
Cl1	0.95342 (8)	0.50699 (9)	0.22049 (3)	0.0532 (3)	
C12	0.45144 (9)	0.43229 (10)	0.22268 (3)	0.0567 (3)	
F4	0.6149 (10)	0.3307 (14)	0.0024 (4)	0.160 (5)	0.59 (2)
F5	0.4496 (17)	0.2631 (12)	-0.0181 (4)	0.154 (4)	0.59 (2)
F6	0.4203 (15)	0.3934 (11)	0.0185 (3)	0.137 (5)	0.59 (2)
F4'	0.570 (2)	0.260 (2)	-0.0160 (5)	0.160 (7)	0.41 (2)
F5'	0.376 (2)	0.2455 (18)	-0.0130 (5)	0.152 (7)	0.41 (2)
F6'	0.503 (2)	0.3963 (16)	0.0258 (4)	0.129 (6)	0.41 (2)
01	0.9179 (3)	0.1508 (3)	0.19011 (9)	0.0654 (9)	
O2	0.0775 (3)	0.2832 (3)	0.31653 (8)	0.0616 (8)	
N1	0.7286 (3)	0.2251 (3)	0.29390 (9)	0.0439 (8)	
H1A	0.669 (3)	0.163 (3)	0.2889 (11)	0.064 (13)*	
N2	0.6407 (3)	0.3079 (3)	0.36817 (10)	0.0554 (9)	
N3	0.2638 (3)	0.2183 (3)	0.21098 (9)	0.0397 (8)	
H3A	0.330 (3)	0.276 (4)	0.2164 (12)	0.086 (16)*	
N4	0.3515 (3)	0.1331 (3)	0.13693 (9)	0.0492 (9)	
C1	0.7761 (6)	0.3490 (6)	0.08685 (14)	0.100 (2)	
H1	0.7895	0.3684	0.0612	0.120*	
C2	0.6737 (5)	0.3892 (5)	0.10693 (15)	0.0781 (15)	
H2	0.6084	0.4377	0.0966	0.094*	
C3	0.6785 (4)	0.3486 (4)	0.14507 (12)	0.0557 (11)	
Н3	0.6167	0.3681	0.1630	0.067*	
C4	0.7836 (4)	0.2773 (4)	0.15315 (12)	0.0538 (11)	
C5	0.8246 (4)	0.2186 (4)	0.18879 (12)	0.0492 (11)	
C6	0.7438 (4)	0.2431 (4)	0.22355 (11)	0.0540 (11)	
H6A	0.7150	0.3308	0.2232	0.065*	
H6B	0.6699	0.1885	0.2227	0.065*	
C7	0.8153 (3)	0.2185 (4)	0.26006 (11)	0.0489 (11)	
H7A	0.8542	0.1350	0.2589	0.059*	
H7B	0.8820	0.2813	0.2629	0.059*	
C8	0.6711 (4)	0.3527 (4)	0.29960 (12)	0.0545 (11)	
H8A	0.6261	0.3777	0.2766	0.065*	
H8B	0.7372	0.4148	0.3043	0.065*	
C9	0.5804 (4)	0.3512 (4)	0.33305 (12)	0.0583 (12)	
H9A	0.5472	0.4363	0.3369	0.070*	
H9B	0.5098	0.2955	0.3271	0.070*	
C10	0.7027 (4)	0.1857 (4)	0.36287 (12)	0.0602 (12)	
H10A	0.6392	0.1208	0.3583	0.072*	
H10B	0.7479	0.1634	0.3861	0.072*	
C11	0.7940 (4)	0.1878 (4)	0.32990 (12)	0.0551 (11)	
H11A	0.8616	0.2478	0.3353	0.066*	
H11B	0.8314	0.1040	0.3268	0.066*	
C12	0.5690 (4)	0.3231 (5)	0.40204 (14)	0.0648 (13)	
C13	0.6025 (5)	0.2608 (5)	0.43516 (15)	0.0832 (16)	
H13A	0.6717	0.2062	0.4350	0.100*	
C14	0.5359 (6)	0.2777 (7)	0.46829 (18)	0.102 (2)	
C15	0.4349 (7)	0.3582 (8)	0.4698 (2)	0.131 (3)	
H15A	0.3931	0.3724	0.4927	0.157*	

C16	0.3960 (6)	0.4176 (7)	0.4372 (2)	0.133 (3)	
H16A	0.3242	0.4688	0.4375	0.159*	
C17	0.4637 (6)	0.4017 (6)	0.40344 (18)	0.108 (2)	
H17A	0.4379	0.4445	0.3815	0.129*	
C18	0.5752 (7)	0.2091 (8)	0.5042 (3)	0.152 (3)	
F1	0.6814 (12)	0.1474 (16)	0.5034 (5)	0.212 (10)	0.40
F2	0.4798 (13)	0.1113 (12)	0.5086 (4)	0.222 (8)	0.40
F3	0.5516 (15)	0.2816 (12)	0.5349 (3)	0.191 (6)	0.40
F1'	0.6351 (9)	0.0965 (7)	0.4965 (2)	0.139 (3)	0.60
F2'	0.4833 (10)	0.1807 (13)	0.5273 (3)	0.231 (5)	0.60
F3'	0.6644 (7)	0.2900 (8)	0.5220 (2)	0.184 (4)	0.60
C19	0.2390 (5)	0.0884 (5)	0.41821 (14)	0.0835 (16)	
H19	0.2303	0.0700	0.4441	0.100*	
C20	0.3376 (4)	0.0491 (4)	0.39733 (13)	0.0668 (13)	
H20	0.4048	0.0012	0.4067	0.080*	
C21	0.3257 (4)	0.0905 (4)	0.35889 (12)	0.0516 (11)	
H21	0.3852	0.0728	0.3400	0.062*	
C22	0.2179 (4)	0.1591 (4)	0.35233 (11)	0.0476 (10)	
C23	0.1737 (4)	0.2176 (4)	0.31697 (11)	0.0460 (10)	
C24	0.2519 (3)	0.1999 (4)	0.28165 (11)	0.0505 (11)	
H24A	0.2840	0.1134	0.2811	0.061*	
H24B	0.3239	0.2570	0.2827	0.061*	
C25	0.1788 (3)	0.2249 (4)	0.24523 (11)	0.0442 (10)	
H25A	0.1118	0.1624	0.2427	0.053*	
H25B	0.1401	0.3086	0.2465	0.053*	
C26	0.3225 (4)	0.0914 (4)	0.20559 (11)	0.0498 (11)	
H26A	0.2571	0.0285	0.2010	0.060*	
H26B	0.3676	0.0673	0.2286	0.060*	
C27	0.4123 (4)	0.0936 (4)	0.17252 (11)	0.0532 (11)	
H27A	0.4812	0.1516	0.1782	0.064*	
H27B	0.4480	0.0092	0.1692	0.064*	
C28	0.2864 (4)	0.2552 (4)	0.14174 (12)	0.0530(11)	
H28A	0.2398	0.2750	0.1186	0.064*	
H28B	0.3486	0.3219	0.1457	0.064*	
C29	0.1965 (4)	0.2530 (4)	0.17514 (11)	0.0532 (11)	
H29A	0.1579	0.3363	0.1781	0.064*	
H29B	0.1297	0.1918	0.1703	0.064*	
C30	0.4274 (4)	0.1209 (4)	0.10424 (12)	0.0562 (11)	
C31	0.5111 (5)	0.0189 (5)	0.10076 (15)	0.0978 (19)	
H31A	0.5173	-0.0409	0.1203	0.117*	
C32	0.5852 (6)	0.0065 (7)	0.0684 (2)	0.126 (2)	
H32A	0.6419	-0.0610	0.0669	0.152*	
C33	0.5778 (6)	0.0897 (7)	0.03866 (17)	0.104 (2)	
H33A	0.6267	0.0794	0.0168	0.125*	
C34	0.4960 (5)	0.1886 (6)	0.04236 (15)	0.0806 (15)	
C35	0.4210 (4)	0.2047 (5)	0.07409 (13)	0.0644 (13)	
H35A	0.3653	0.2731	0.0752	0.077*	
C36	0.4935 (10)	0.2888 (9)	0.0119 (2)	0.124 (3)	

Atomic displacement parameter	ers ($(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0841 (10)	0.1419 (15)	0.0576 (9)	0.0016 (9)	0.0215 (7)	-0.0117 (9)
S2	0.0848 (10)	0.1166 (12)	0.0520 (8)	0.0144 (8)	0.0242 (7)	-0.0045 (8)
Cl1	0.0477 (6)	0.0448 (7)	0.0672 (8)	0.0020 (5)	0.0027 (5)	0.0029 (5)
Cl2	0.0492 (6)	0.0460 (7)	0.0749 (8)	-0.0021 (5)	0.0017 (5)	-0.0066 (6)
F4	0.144 (7)	0.195 (8)	0.142 (8)	-0.050 (6)	0.040 (6)	0.054 (6)
F5	0.176 (10)	0.189 (7)	0.097 (6)	-0.023 (8)	-0.038 (7)	0.022 (5)
F6	0.173 (9)	0.129 (6)	0.108 (6)	0.029 (6)	0.059 (6)	0.047 (5)
F4'	0.167 (10)	0.201 (11)	0.111 (9)	-0.018 (8)	0.069 (8)	0.027 (7)
F5'	0.152 (10)	0.177 (10)	0.127 (9)	0.019 (8)	-0.020 (8)	0.025 (7)
F6'	0.169 (11)	0.117 (8)	0.100 (7)	-0.012 (8)	0.004 (8)	0.035 (6)
O1	0.0550 (18)	0.066 (2)	0.075 (2)	0.0076 (16)	0.0098 (16)	-0.0073 (17)
02	0.0543 (18)	0.064 (2)	0.066 (2)	0.0113 (16)	0.0070 (15)	-0.0064 (16)
N1	0.0398 (19)	0.039 (2)	0.053 (2)	-0.0027 (17)	0.0023 (16)	0.0015 (17)
N2	0.056 (2)	0.057 (2)	0.053 (2)	0.0002 (18)	0.0019 (18)	-0.0038 (19)
N3	0.0378 (18)	0.039 (2)	0.042 (2)	0.0011 (16)	0.0020 (15)	0.0046 (15)
N4	0.059 (2)	0.050 (2)	0.038 (2)	0.0023 (17)	0.0003 (17)	0.0005 (16)
C1	0.119 (5)	0.144 (6)	0.037 (3)	-0.031 (4)	0.010 (3)	0.002 (3)
C2	0.087 (4)	0.086 (4)	0.061 (4)	-0.018 (3)	-0.008 (3)	0.005 (3)
C3	0.063 (3)	0.055 (3)	0.049 (3)	-0.013 (2)	0.007 (2)	0.000 (2)
C4	0.049 (3)	0.064 (3)	0.048 (3)	-0.014 (2)	0.007 (2)	-0.009 (2)
C5	0.043 (2)	0.048 (3)	0.057 (3)	-0.012 (2)	0.005 (2)	-0.010 (2)
C6	0.046 (2)	0.063 (3)	0.054 (3)	0.000 (2)	0.009 (2)	0.001 (2)
C7	0.040 (2)	0.050 (3)	0.057 (3)	0.0002 (19)	0.002 (2)	0.004 (2)
C8	0.060 (3)	0.038 (3)	0.066 (3)	0.005 (2)	0.006 (2)	0.002 (2)
C9	0.063 (3)	0.047 (3)	0.065 (3)	0.009 (2)	0.007 (2)	0.006 (2)
C10	0.066 (3)	0.070 (3)	0.045 (3)	0.010 (2)	-0.002 (2)	0.011 (2)
C11	0.055 (2)	0.062 (3)	0.048 (3)	0.010 (2)	-0.006 (2)	0.011 (2)
C12	0.057 (3)	0.075 (3)	0.062 (3)	-0.012 (2)	0.006 (2)	-0.015 (3)
C13	0.072 (3)	0.122 (4)	0.056 (3)	-0.004 (3)	0.008 (3)	0.001 (3)
C14	0.094 (4)	0.153 (6)	0.061 (4)	-0.004 (4)	0.009 (3)	-0.003 (4)
C15	0.125 (5)	0.179 (7)	0.088 (5)	0.010 (5)	0.029 (4)	-0.033 (5)
C16	0.117 (5)	0.161 (6)	0.120 (6)	0.040 (4)	0.031 (5)	-0.021 (5)
C17	0.116 (4)	0.119 (5)	0.088 (4)	0.039 (4)	0.023 (3)	-0.013 (4)
C18	0.120 (6)	0.194 (8)	0.142 (7)	0.012 (6)	0.045 (6)	-0.013 (6)
F1	0.210 (12)	0.231 (13)	0.194 (12)	-0.015 (9)	-0.021 (8)	0.046 (9)
F2	0.255 (12)	0.207 (11)	0.205 (12)	0.011 (9)	0.029 (9)	-0.011 (9)
F3	0.234 (10)	0.224 (10)	0.114 (8)	-0.061 (9)	0.019 (8)	0.005 (7)
F1'	0.169 (6)	0.177 (7)	0.070 (4)	-0.007 (6)	0.020 (4)	0.049 (4)
F2'	0.253 (8)	0.299 (10)	0.141 (7)	0.016 (8)	0.117 (6)	0.045 (7)
F3'	0.177 (6)	0.250 (8)	0.126 (6)	0.073 (6)	-0.054 (5)	-0.071 (5)
C19	0.111 (4)	0.099 (4)	0.040 (3)	-0.001 (3)	0.001 (3)	0.003 (3)
C20	0.078 (3)	0.069 (3)	0.054 (3)	0.001 (3)	-0.006 (3)	0.000 (3)
C21	0.057 (3)	0.052 (3)	0.045 (3)	-0.010 (2)	0.006 (2)	-0.004 (2)
C22	0.048 (2)	0.050 (3)	0.045 (3)	-0.003 (2)	0.0085 (19)	-0.004 (2)

C23	0.044 (2)	0.042 (3)	0.052 (3)	-0.006 (2)	0.004 (2)	-0.004 (2)
C24	0.043 (2)	0.066 (3)	0.042 (3)	0.004 (2)	0.0051 (19)	0.005 (2)
C25	0.041 (2)	0.045 (3)	0.047 (3)	0.0006 (18)	0.0030 (19)	0.0085 (19)
C26	0.062 (3)	0.045 (3)	0.042 (3)	0.008 (2)	0.003 (2)	0.009 (2)
C27	0.061 (3)	0.050 (3)	0.048 (3)	0.013 (2)	0.002 (2)	0.002 (2)
C28	0.056 (3)	0.056 (3)	0.047 (3)	0.008 (2)	-0.001 (2)	0.010 (2)
C29	0.048 (2)	0.062 (3)	0.050 (3)	0.008 (2)	-0.006 (2)	0.011 (2)
C30	0.067 (3)	0.056 (3)	0.046 (3)	-0.004 (2)	0.004 (2)	-0.008 (2)
C31	0.140 (5)	0.089 (4)	0.064 (4)	0.036 (4)	0.034 (3)	0.004 (3)
C32	0.147 (6)	0.146 (7)	0.086 (5)	0.052 (5)	0.033 (4)	-0.014 (5)
C33	0.118 (5)	0.131 (6)	0.063 (4)	0.009 (4)	0.037 (4)	-0.013 (4)
C34	0.093 (4)	0.095 (4)	0.053 (4)	-0.012 (3)	0.019 (3)	-0.003 (3)
C35	0.072 (3)	0.074 (3)	0.047 (3)	-0.002 (2)	0.007 (2)	0.003 (3)
C36	0.169 (9)	0.149 (8)	0.054 (5)	-0.003 (7)	0.031 (5)	-0.002(5)

Geometric parameters (Å, °)

S1—C1	1.683 (6)	C12—C17	1.387 (6)
S1—C4	1.716 (4)	C13—C14	1.367 (7)
S2—C19	1.692 (5)	С13—Н13А	0.9300
S2—C22	1.707 (4)	C14—C15	1.363 (8)
F4—C36	1.397 (14)	C14—C18	1.505 (10)
F5—C36	1.178 (13)	C15—C16	1.363 (9)
F6—C36	1.363 (13)	C15—H15A	0.9300
F4'—C36	1.303 (15)	C16—C17	1.389 (8)
F5'—C36	1.58 (2)	C16—H16A	0.9300
F6'—C36	1.234 (17)	C17—H17A	0.9300
O1—C5	1.218 (4)	C18—F1	1.296 (9)
O2—C23	1.228 (4)	C18—F2'	1.298 (8)
N1—C8	1.484 (5)	C18—F3	1.340 (9)
N1—C11	1.488 (5)	C18—F1'	1.368 (8)
N1—C7	1.499 (5)	C18—F3'	1.413 (8)
N1—H1A	0.93 (3)	C18—F2	1.448 (9)
N2—C12	1.416 (5)	C19—C20	1.339 (6)
N2	1.452 (5)	С19—Н19	0.9300
N2—C9	1.456 (5)	C20—C21	1.418 (6)
N3—C26	1.482 (5)	С20—Н20	0.9300
N3—C29	1.486 (5)	C21—C22	1.367 (5)
N3—C25	1.499 (4)	C21—H21	0.9300
N3—H3A	0.94 (3)	C22—C23	1.458 (5)
N4—C30	1.403 (5)	C23—C24	1.498 (5)
N4—C27	1.461 (5)	C24—C25	1.512 (5)
N4—C28	1.465 (5)	C24—H24A	0.9700
C1—C2	1.358 (6)	C24—H24B	0.9700
С1—Н1	0.9300	C25—H25A	0.9700
C2—C3	1.401 (6)	C25—H25B	0.9700
С2—Н2	0.9300	C26—C27	1.497 (5)
C3—C4	1.369 (5)	C26—H26A	0.9700
С3—Н3	0.9300	С26—Н26В	0.9700

C4—C5	1.456 (6)	C27—H27A	0.9700
C5—C6	1.508 (5)	С27—Н27В	0.9700
C6—C7	1.505 (5)	C28—C29	1.507 (5)
С6—Н6А	0.9700	C28—H28A	0.9700
С6—Н6В	0.9700	C28—H28B	0.9700
С7—Н7А	0.9700	C29—H29A	0.9700
С7—Н7В	0.9700	С29—Н29В	0.9700
C8—C9	1.513 (5)	C30—C35	1.375 (6)
C8—H8A	0.9700	C30—C31	1.395 (6)
C8—H8B	0.9700	C31—C32	1.384 (7)
С9—Н9А	0.9700	C31—H31A	0.9300
С9—Н9В	0.9700	C32—C33	1.359 (8)
C10-C11	1.504 (5)	C32—H32A	0.9300
C10—H10A	0.9700	C33—C34	1.357 (7)
C10—H10B	0.9700	С33—Н33А	0.9300
C11—H11A	0.9700	C34—C35	1.375 (6)
C11—H11B	0.9700	C34—C36	1.498 (9)
C12—C13	1.376 (6)	C35—H35A	0.9300
C1—S1—C4	91.7 (3)	F2'	41.3 (7)
C19—S2—C22	91.3 (2)	F3—C18—F2	100.7 (9)
C8—N1—C11	108.3 (3)	F1'—C18—F2	74.4 (8)
C8—N1—C7	113.5 (3)	F3'—C18—F2	147.5 (11)
C11—N1—C7	111.8 (3)	F1-C18-C14	117.4 (9)
C8—N1—H1A	112 (2)	F2'—C18—C14	115.0 (8)
C11—N1—H1A	107 (2)	F3—C18—C14	110.2 (8)
C7—N1—H1A	104 (2)	F1'	112.1 (7)
C12—N2—C10	116.7 (4)	F3'	105.2 (7)
C12—N2—C9	115.8 (4)	F2-C18-C14	103.7 (8)
C10—N2—C9	111.5 (3)	C20—C19—S2	114.0 (4)
C26—N3—C29	108.3 (3)	С20—С19—Н19	123.0
C26—N3—C25	113.3 (3)	S2—C19—H19	123.0
C29—N3—C25	112.0 (3)	C19—C20—C21	110.7 (4)
C26—N3—H3A	107 (3)	C19—C20—H20	124.6
C29—N3—H3A	111 (3)	C21—C20—H20	124.6
C25—N3—H3A	105 (3)	C22—C21—C20	113.2 (4)
C30—N4—C27	114.6 (3)	C22—C21—H21	123.4
C30—N4—C28	116.3 (3)	C20—C21—H21	123.4
C27—N4—C28	110.9 (3)	C21—C22—C23	129.1 (4)
C2—C1—S1	112.9 (4)	C21—C22—S2	110.8 (3)
C2—C1—H1	123.5	C23—C22—S2	120.1 (3)
S1—C1—H1	123.5	O2—C23—C22	120.8 (4)
C1—C2—C3	111.7 (5)	O2—C23—C24	121.1 (4)
С1—С2—Н2	124.2	C22—C23—C24	118.1 (4)
С3—С2—Н2	124.2	C23—C24—C25	113.0 (3)
C4—C3—C2	113.1 (4)	C23—C24—H24A	109.0
С4—С3—Н3	123.5	C25—C24—H24A	109.0
С2—С3—Н3	123.5	C23—C24—H24B	109.0
C3—C4—C5	130.5 (4)	C25—C24—H24B	109.0
C3—C4—S1	110.6 (3)	H24A—C24—H24B	107.8

C5—C4—S1	118.9 (3)	N3—C25—C24	111.0 (3)
O1—C5—C4	121.4 (4)	N3—C25—H25A	109.4
O1—C5—C6	121.9 (4)	С24—С25—Н25А	109.4
C4—C5—C6	116.7 (4)	N3—C25—H25B	109.4
C7—C6—C5	111.7 (3)	С24—С25—Н25В	109.4
С7—С6—Н6А	109.3	H25A—C25—H25B	108.0
С5—С6—Н6А	109.3	N3—C26—C27	110.5 (3)
С7—С6—Н6В	109.3	N3—C26—H26A	109.5
С5—С6—Н6В	109.3	С27—С26—Н26А	109.5
H6A—C6—H6B	107.9	N3—C26—H26B	109.5
N1—C7—C6	110.8 (3)	С27—С26—Н26В	109.5
N1—C7—H7A	109.5	H26A—C26—H26B	108.1
С6—С7—Н7А	109.5	N4—C27—C26	112.5 (3)
N1—C7—H7B	109.5	N4—C27—H27A	109.1
С6—С7—Н7В	109.5	С26—С27—Н27А	109.1
H7A—C7—H7B	108.1	N4—C27—H27B	109.1
N1—C8—C9	110.7 (3)	С26—С27—Н27В	109.1
N1—C8—H8A	109.5	H27A—C27—H27B	107.8
С9—С8—Н8А	109.5	N4—C28—C29	111.9 (3)
N1—C8—H8B	109.5	N4—C28—H28A	109.2
С9—С8—Н8В	109.5	C29—C28—H28A	109.2
H8A—C8—H8B	108.1	N4—C28—H28B	109.2
N2—C9—C8	112.2 (3)	C29—C28—H28B	109.2
N2—C9—H9A	109.2	H28A—C28—H28B	107.9
С8—С9—Н9А	109.2	N3—C29—C28	110.8 (3)
N2—C9—H9B	109.2	N3—C29—H29A	109.5
С8—С9—Н9В	109.2	С28—С29—Н29А	109.5
H9A—C9—H9B	107.9	N3—C29—H29B	109.5
N2-C10-C11	112.0 (3)	С28—С29—Н29В	109.5
N2—C10—H10A	109.2	H29A—C29—H29B	108.1
C11-C10-H10A	109.2	C35—C30—C31	117.1 (4)
N2—C10—H10B	109.2	C35—C30—N4	122.6 (4)
C11-C10-H10B	109.2	C31—C30—N4	120.3 (4)
H10A—C10—H10B	107.9	C32—C31—C30	120.2 (5)
N1—C11—C10	110.7 (3)	C32—C31—H31A	119.9
N1—C11—H11A	109.5	C30-C31-H31A	119.9
C10-C11-H11A	109.5	C33—C32—C31	122.2 (6)
N1—C11—H11B	109.5	C33—C32—H32A	118.9
C10—C11—H11B	109.5	C31—C32—H32A	118.9
H11A—C11—H11B	108.1	C34—C33—C32	117.1 (5)
C13—C12—C17	117.3 (5)	С34—С33—Н33А	121.5
C13—C12—N2	120.8 (5)	С32—С33—Н33А	121.5
C17—C12—N2	121.8 (5)	C33—C34—C35	122.6 (5)
C14—C13—C12	121.3 (6)	C33—C34—C36	118.7 (6)
C14—C13—H13A	119.4	C35—C34—C36	118.5 (6)
C12—C13—H13A	119.4	C30—C35—C34	120.8 (5)
C15—C14—C13	121.1 (7)	С30—С35—Н35А	119.6
C15—C14—C18	118.7 (6)	С34—С35—Н35А	119.6
C13—C14—C18	120.2 (6)	F5—C36—F6'	126.5 (13)

C14—C15—C16	119.2 (7)	F5—C36—F4'	61.7 (9)
C14—C15—H15A	120.4	F6'—C36—F4'	117.1 (15)
C16-C15-H15A	120.4	F5—C36—F6	96.4 (12)
C15-C16-C17	120.0 (7)	F6'—C36—F6	41.0 (7)
C15-C16-H16A	120.0	F4'	131.8 (10)
C17—C16—H16A	120.0	F5—C36—F4	102.9 (9)
C12-C17-C16	121.0 (6)	F6'	74.2 (12)
С12—С17—Н17А	119.5	F4'	47.5 (9)
С16—С17—Н17А	119.5	F6—C36—F4	108.0 (11)
F1—C18—F2'	123.1 (13)	F5—C36—C34	118.6 (11)
F1—C18—F3	117.5 (11)	F6'C36C34	111.1 (9)
F2'—C18—F3	59.5 (7)	F4'C36C34	111.0 (10)
F1—C18—F1'	33.2 (9)	F6—C36—C34	117.1 (7)
F2'—C18—F1'	105.7 (8)	F4—C36—C34	111.9 (8)
F3—C18—F1'	137.3 (11)	F5—C36—F5'	30.2 (10)
F1—C18—F3'	74.4 (9)	F6'—C36—F5'	123.2 (15)
F2'—C18—F3'	111.4 (10)	F4'—C36—F5'	90.5 (14)
F3—C18—F3'	55.3 (7)	F6—C36—F5'	83.0 (12)
F1'	107.3 (8)	F4—C36—F5'	133.0 (10)
F1—C18—F2	104.5 (10)	C34—C36—F5'	101.7 (10)
C4—S1—C1—C2	-1.0 (4)	C22—S2—C19—C20	0.5 (4)
S1—C1—C2—C3	1.1 (6)	S2—C19—C20—C21	-0.2 (6)
C1—C2—C3—C4	-0.7 (6)	C19—C20—C21—C22	-0.3 (6)
C2—C3—C4—C5	179.4 (4)	C20—C21—C22—C23	179.5 (4)
C2—C3—C4—S1	-0.1 (5)	C20-C21-C22-S2	0.6 (4)
C1—S1—C4—C3	0.6 (4)	C19—S2—C22—C21	-0.6 (3)
C1—S1—C4—C5	-178.9 (4)	C19—S2—C22—C23	-179.6 (3)
C3—C4—C5—O1	175.2 (4)	C21—C22—C23—O2	-175.4 (4)
S1—C4—C5—O1	-5.4 (5)	S2—C22—C23—O2	3.3 (5)
C3—C4—C5—C6	-3.2 (6)	C21—C22—C23—C24	2.1 (6)
S1—C4—C5—C6	176.3 (3)	S2—C22—C23—C24	-179.2 (3)
O1—C5—C6—C7	21.4 (6)	O2—C23—C24—C25	-21.7 (5)
C4—C5—C6—C7	-160.3 (3)	C22—C23—C24—C25	160.8 (3)
C8—N1—C7—C6	-63.1 (4)	C26—N3—C25—C24	61.9 (4)
C11—N1—C7—C6	174.0 (3)	C29—N3—C25—C24	-175.3 (3)
C5—C6—C7—N1	-171.9 (3)	C23—C24—C25—N3	174.6 (3)
C11—N1—C8—C9	-57.8 (4)	C29—N3—C26—C27	58.7 (4)
C7—N1—C8—C9	177.5 (3)	C25—N3—C26—C27	-176.4 (3)
C12—N2—C9—C8	170.1 (3)	C30—N4—C27—C26	-172.1 (3)
C10—N2—C9—C8	-53.4 (5)	C28—N4—C27—C26	53.7 (4)
N1—C8—C9—N2	56.2 (5)	N3-C26-C27-N4	-57.4 (4)
C12—N2—C10—C11	-169.9 (3)	C30—N4—C28—C29	173.5 (3)
C9—N2—C10—C11	54.0 (5)	C27—N4—C28—C29	-53.1 (4)
C8—N1—C11—C10	58.5 (4)	C26—N3—C29—C28	-58.7 (4)
C7—N1—C11—C10	-175.8 (3)	C25—N3—C29—C28	175.7 (3)
N2-C10-C11-N1	-57.4 (5)	N4—C28—C29—N3	56.8 (4)
C10-N2-C12-C13	30.9 (6)	C27—N4—C30—C35	-145.6 (4)
C9—N2—C12—C13	165.2 (4)	C28—N4—C30—C35	-14.0 (6)
C10—N2—C12—C17	-149.8 (5)	C27—N4—C30—C31	36.2 (6)

C9—N2—C12—C17	-15.5 (6)	C28—N4—C30—C31	167.8 (4)
C17—C12—C13—C14	-1.2 (8)	C35—C30—C31—C32	1.2 (8)
N2-C12-C13-C14	178.1 (5)	N4-C30-C31-C32	179.5 (5)
C12—C13—C14—C15	-0.9 (9)	C30—C31—C32—C33	-1.5 (11)
C12—C13—C14—C18	-179.6 (5)	C31—C32—C33—C34	1.5 (11)
C13—C14—C15—C16	3.4 (11)	C32—C33—C34—C35	-1.3 (9)
C18—C14—C15—C16	-177.9 (7)	C32—C33—C34—C36	174.6 (7)
C14—C15—C16—C17	-3.8 (12)	C31—C30—C35—C34	-1.0 (7)
C13—C12—C17—C16	0.7 (9)	N4-C30-C35-C34	-179.3 (4)
N2-C12-C17-C16	-178.6 (5)	C33—C34—C35—C30	1.1 (8)
C15—C16—C17—C12	1.8 (11)	C36—C34—C35—C30	-174.8 (6)
C15—C14—C18—F1	-170.6 (11)	C33—C34—C36—F5	71.9 (16)
C13—C14—C18—F1	8.2 (13)	C35—C34—C36—F5	-112.1 (14)
C15—C14—C18—F2'	32.4 (12)	C33—C34—C36—F6'	-128.6 (14)
C13—C14—C18—F2'	-148.8 (9)	C35—C34—C36—F6'	47.5 (17)
C15—C14—C18—F3	-32.4 (11)	C33—C34—C36—F4'	4(2)
C13—C14—C18—F3	146.4 (9)	C35—C34—C36—F4'	179.6 (17)
C15—C14—C18—F1'	153.2 (8)	C33—C34—C36—F6	-173.2 (12)
C13—C14—C18—F1'	-28.0 (9)	C35—C34—C36—F6	2.9 (15)
C15—C14—C18—F3'	-90.5 (8)	C33—C34—C36—F4	-47.8 (14)
C13—C14—C18—F3'	88.3 (8)	C35—C34—C36—F4	128.3 (11)
C15—C14—C18—F2	74.7 (10)	C33—C34—C36—F5'	98.7 (10)
C13—C14—C18—F2	-106.5 (9)	C35—C34—C36—F5'	-85.3 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
N3—H3A···Cl2	0.94 (3)	2.10 (3)	3.025 (3)	168 (4)
N1—H1A…Cl1 ⁱ	0.93 (3)	2.11 (3)	3.033 (3)	174 (3)
Symmetry codes: (i) $-x+3/2$, $y-1/2$, $-z+1/2$.				

Fig. 1